

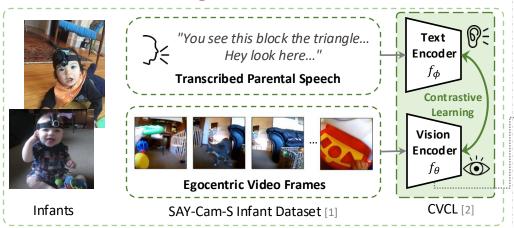
Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning

Xueyi Ke¹, Satoshi Tsutsui¹, Yayun Zhang², Bihan Wen¹

¹Nanyang Technological University
²The Max Planck Institute for Psycholinguistics

Scan here for project page!

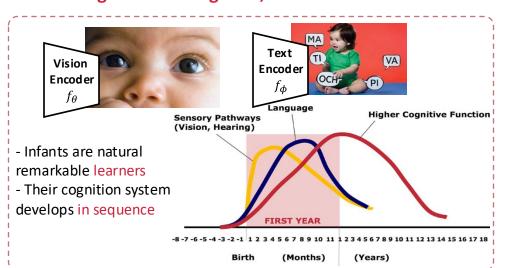
Prior Work: Training Models from Infant Data



Computational Model

Our Research Question:

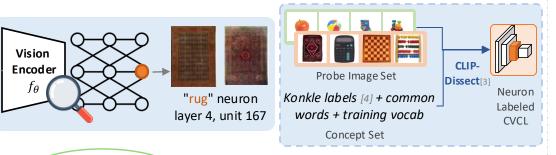
Does the vision encoder of a model trained on infant egocentric data develop visual representations beyond its linguistic training data, like human infants?



Does Vision Develop Earlier?

Vision encoder may recognize patterns beyond text in representation space:

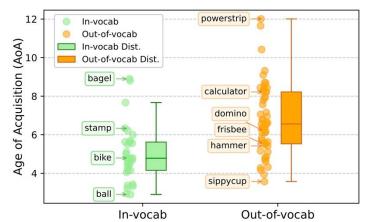
To verify, we apply "neuron labeling"[3]: assign an object label to each neuron.



Discovered visual concepts from visual representation are categorized as in- or out-of-vocabulary.

Many out-of-vocabulary visual concepts emerge in specific neurons.

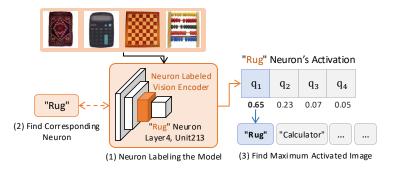
We rate visual concept from cognitive perspective: Age of Acquisition (AoA) [5]



Complex patterns in out-of-vocabulary concepts suggest visual learning beyond text supervision.

Neuron-based Classification

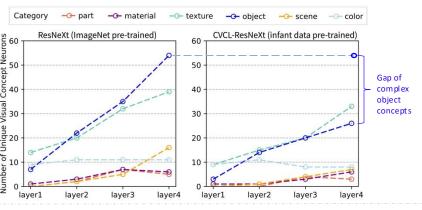
Model can classify images using only a single visual concept neuron, without any additional training.



Method	Model	In-vocab	Out-of-vocab	All
Vanilla	CLIP-ResNet50	$98.81_{\pm 0.16}$	$96.93_{\pm 0.06}$	$97.42_{\pm 0.05}$
	ResNeXt50	X	X	X
	CVCL-ResNeXt50 (Baseline)	$36.18_{\pm 0.91}$	×	×
Neuron Classifier	CLIP-ResNet50	$91.59_{\pm 0.52}$	$88.66_{\pm 0.35}$	$89.79_{\pm 0.38}$
	ResNeXt50	$88.17_{\pm 0.45}^{\pm 0.32}$	$93.28_{\pm 0.36}^{\pm 0.36}$	$91.88_{\pm 0.15}$
	CVCL-ResNeXt50	$79.50_{\pm 0.78}^{20.13}$	$76.81_{\pm 0.35}$	$77.79_{\pm 0.40}$

ImageNet vs Infant Pretrained Representations

A significant gap in representation richness exists across final layers.



[1] Jessica S., et al. (2021). Say-Cam: A large, longitudinal audiovisual dataset recorded from the infant's perspective. *Open mind*. [2] Yong, W. K., Wang, W., Orhan, A. E., & Lake, B. M. (2024). Grounded language acquisition through the eyes and ears of a single child. *Science*. [3] Olkarinen. T., & Weng. T. W. (2023). CLP-Dissect. Automatic Describion of Neuron Representations in Exposition Networks. *ICLR*.

[4] Konkle, T., et al. (2010). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. *Journal of experime ntal psychology*. [5] Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior research methods, 44, 978-990.

Acknowledgements: This work was partially supported by the National Research Foundation Singapore Competitive Research Program (award number CPP 29-2022-2003). We thank Wai Keen Vong for invaluable discussion and CVCL's pretrained weights. We thank lingly Lin for figure discussions.